Critical and creative thinking

Introduction

In the Australian Curriculum, students develop capability in critical and creative thinking as they learn to generate and evaluate knowledge, clarify concepts and ideas, seek possibilities, consider alternatives and solve problems. Critical and creative thinking are integral to activities that require students to think broadly and deeply using skills, behaviours and dispositions such as reason, logic, resourcefulness, imagination and innovation in all learning areas at school and in their lives beyond school.

The Melbourne Declaration on Educational Goals for Young Australians (MCEETYA 2008) recognises that critical and creative thinking are fundamental to students becoming successful learners. Thinking that is productive, purposeful and intentional is at the centre of effective learning. By applying a sequence of thinking skills, students develop an increasingly sophisticated understanding of the processes they can employ whenever they encounter problems, unfamiliar information and new ideas. In addition, the progressive development of knowledge about thinking and the practice of using thinking strategies can increase students’ motivation for, and management of, their own learning. They become more confident and autonomous problem-solvers and thinkers.

Responding to the challenges of the twenty-first century – with its complex environmental, social and economic pressures – requires young people to be creative, innovative, enterprising and adaptable, with the motivation, confidence and skills to use critical and creative thinking purposefully.

Scope of Critical and creative thinking

This capability combines two types of thinking – critical thinking and creative thinking. Though the two are not interchangeable, they are strongly linked, bringing complementary dimensions to thinking and learning.

Critical thinking is at the core of most intellectual activity that involves students in learning to recognise or develop an argument, use evidence in support of that argument, draw reasoned conclusions, and use information to solve problems. Examples of thinking skills are interpreting, analysing, evaluating, explaining, sequencing, reasoning, comparing, questioning, inferring, hypothesising, appraising, testing and generalising.

Creative thinking involves students in learning to generate and apply new ideas in specific contexts, seeing existing situations in a new way, identifying alternative explanations, and seeing or making new links that generate a positive outcome. This includes combining parts to form something original, sifting and refining ideas to discover possibilities, constructing theories and objects, and acting on intuition. The products of creative endeavour can involve complex representations and images, investigations and performances, digital and computer-generated output, or occur as virtual reality.

Concept formation is the mental activity that helps us compare, contrast and classify ideas, objects, and events. Concept learning can be concrete or abstract and is closely allied with metacognition. What has been learned can be applied to future examples. It underpins the elements outlined below.
Dispositions such as inquisitiveness, reasonableness, intellectual flexibility, open- and fair-mindedness, a readiness to try new ways of doing things and consider alternatives, and persistence both promote and are enhanced by critical and creative thinking.

Critical and creative thinking can be encouraged simultaneously through activities that integrate reason, logic, imagination and innovation; for example, focusing on a topic in a logical, analytical way for some time, sorting out conflicting claims, weighing evidence, thinking through possible solutions, and then, following reflection and perhaps a burst of creative energy, coming up with innovative and considered responses. Critical and creative thinking are communicative processes that develop both flexibility and precision. Communication is integral to each of the thinking processes. By sharing thinking, visualisation and innovation, and by giving and receiving effective feedback, students learn to value the diversity of learning and communication styles.

For a description of the organising elements for Critical and creative thinking, go to Organising elements.

Critical and creative thinking across the curriculum

The imparting of knowledge (content) and the development of thinking skills are accepted today as primary purposes of education. The explicit teaching and embedding of Critical and creative thinking throughout the learning areas encourages students to engage in higher order thinking. By using logic and imagination, and by reflecting on how they best tackle issues, tasks and challenges, students are increasingly able to select from a range of thinking strategies and employ them selectively and spontaneously in an increasing range of learning contexts.

Activities that foster critical and creative thinking should include both independent and collaborative tasks, and entail some sort of transition or tension between ways of thinking. They should be challenging and engaging, and contain approaches that are within the ability range of the learners, but also challenge them to think logically, reason, be open-minded, seek alternatives, tolerate ambiguity, inquire into possibilities, be innovative risk-takers and use their imagination.

Critical and creative thinking is addressed through the learning areas and is identified wherever it is developed or applied in content descriptions. It is also identified where it offers opportunities to add depth and richness to student learning in content elaborations. An icon indicates where Critical and creative thinking has been identified in learning area content descriptions and elaborations. A filter function on the Australian Curriculum website assists users to identify F–10 curriculum content where Critical and creative thinking has been identified. Teachers may find further opportunities to incorporate explicit teaching of Critical and creative thinking depending on their choice of activities. Students can also be encouraged to develop capability through personally relevant initiatives of their own design.

- Critical and creative thinking in English
 (http://www.australiancurriculum.edu.au/English/General-capabilities)

- Critical and creative thinking in Mathematics
 (www.australiancurriculum.edu.au/Mathematics/General-capabilities)
Critical and creative thinking in Science
(www.australiancurriculum.edu.au/Science/General-capabilities)

Critical and creative thinking in History
(www.australiancurriculum.edu.au/History/General-capabilities)

Background

This background summarises the evidence base from which the Critical and creative thinking capability’s introduction, organising elements and learning continuum have been developed. It draws on foundational and recent international and national research, as well as initiatives and programs that focus on critical and creative thinking across the curriculum.

Critical and creative thinking are variously characterised by theorists as dispositions (Tishman, Perkins and Jay; Ritchhart, Church and Morrison), taxonomies of skills (Bloom; Anderson, Krathwohl et al.), habits and frames of mind (Costa and Kallick; Gardner; de Bono), thinking strategies (Marzano, Pickering and Pollock), and philosophical inquiry (Lipman, Sharp and Oscanyan). Each of these approaches has informed the development of the Critical and creative thinking capability.

The capability is concerned with the encouragement of skills and learning dispositions or tendencies towards particular patterns of intellectual behaviour. These include being broad, flexible and adventurous thinkers, making plans and being strategic, demonstrating metacognition, and displaying intellectual perseverance and integrity. Students learn to skilfully and mindfully use thinking dispositions or ‘habits of mind’ such as risk taking and managing impulsivity (Costa and Kallick 2000) when confronted with problems to which solutions are not immediately apparent.

Both Gardner (1994) and Robinson (2009) emphasise that we need to understand and capitalise on the natural aptitudes, talents and passions of students – they may be highly visual, or think best when they are moving, or listening, or reading. Critical and creative thinking are fostered through opportunities to use dispositions such as broad and adventurous thinking, reflecting on possibilities, and metacognition (Perkins 1995), and can result from intellectual flexibility, open-mindedness, adaptability and a readiness to experiment with and clarify new questions and phenomena (Gardner 2009). Recent discoveries in neuroscience have furthered theories about thinking, the brain, perception and the link between cognition and emotions. Theorists believe that learning is enhanced when rich environments contain multiple stimuli, stressing the importance of engaging the mind’s natural curiosity through complex and meaningful challenges.

Educational taxonomies map sequences of skills and processes considered to be foundational and essential for learning. The most well-known of these, developed by Bloom et al. (1956), divided educational objectives into domains where learning at the higher levels was dependent on having attained prerequisite knowledge and skills at lower levels. In 1967, Bruner and colleagues described the process of concept learning as an active process in which learners construct new concepts or ideas based on their knowledge.

The philosophical inquiry model, first applied to school education by Lipman, Sharp and Oscanyan (1980), has two major elements: critical and creative thinking, and forming a classroom environment called a ‘community of inquiry’, to support the development of
thinking and discussion skills. This model places emphasis on possibilities and meanings, wondering, reasoning, rigour, logic, and using criteria for measuring the quality of thinking.

Lave and Wenger (1991) described ‘learning communities’ that value their collective competence and learn from each other. Through their notion of ‘authentic’ learning, the importance of engagement and linking student interests and preferred learning modes with classroom learning has emerged. Marzano, Pickering and Pollock (2001) identified the strategies most likely to improve student achievement across all content areas and grade levels. These include using non-linguistic representations and learning organisers, and generating and testing hypotheses.

In 2001, Anderson and Krathwohl changed Bloom’s cognitive process of ‘synthesis’ to ‘creativity’ and made it the highest level of intellectual functioning. They believed the ability to create required the production of an original idea or a product from a unique synthesis of discrete elements.

Twenty-first century learning theories emphasise the importance of supporting authentic and ubiquitous (anywhere, anyhow) learning, and providing students with opportunities, resources and spaces to develop their creative and critical thinking skills (Newton and Fisher 2009; McGuinness 1999, 2010). Gardner’s (2009) five ‘minds’ for the future – the disciplined, synthesising, creating, respectful and ethical minds – offers a helpful starting place. Learners need to develop the skills to analyse and respond to authentic situations through inquiry, imagination and innovation.
References

Organising elements

The Critical and creative thinking learning continuum is organised into four interrelated elements, each detailing differing aspects of thinking. The elements are not a taxonomy of thinking. Rather, each makes its own contribution to learning and needs to be explicitly and simultaneously developed.

- Inquiring – identifying, exploring and organising information and ideas
- Generating ideas, possibilities and actions
- Reflecting on thinking and processes
- Analysing, synthesising and evaluating reasoning and procedures

The diagram below sets out these elements.

Inquiring – identifying, exploring and clarifying information and ideas

This element involves students in posing questions and identifying and clarifying information and ideas, followed by organising and processing information. When inquiring – identifying, exploring and clarifying information and ideas, students use questioning to investigate and analyse ideas and issues, make sense of and assess information and ideas, and collect, compare and evaluate information from a range of sources. In summary, inquiring primarily consists of:

- pose questions
- identify and clarify information and ideas
- organise and process information.

Generating ideas, possibilities and actions

This element involves students in imagining possibilities and connecting ideas through considering alternatives and seeking solutions and putting ideas into action. Students create new, and expand on known, ideas. They explore situations and generate alternatives to guide actions and experiment with and assess options and actions when seeking solutions. In summary, generating primarily consists of:
• imagine possibilities and connect ideas
• consider alternatives
• seek solutions and put ideas into action.

Reflecting on thinking and processes

This element involves students thinking about thinking (metacognition), reflecting on actions and processes, and transferring knowledge into new contexts to create alternatives or open up possibilities. Students reflect on, adjust and explain their thinking and identify the thinking behind choices, strategies and actions taken. They apply knowledge gained in one context to clarify another. In summary, reflecting primarily consists of:

• think about thinking (metacognition)
• reflect on processes
• transfer knowledge into new contexts.

Analysing, synthesising and evaluating reasoning and procedures

This element involves students in applying logic and reasoning, drawing conclusions and designing a course of action and evaluating procedures and outcomes. Students consider and assess the logic and reasoning behind choices, they differentiate components of decisions made and actions taken and assess ideas, methods and outcomes against criteria. In summary, analysing primarily consists of:

• apply logic and reasoning
• draw conclusions and design a course of action
• evaluate procedures and outcomes.
Critical and Creative Thinking Learning Continuum

Inquiring – identifying, exploring and organising information and ideas

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typically by the end of Foundation Year, students:</td>
<td>Typically by the end of Year 2, students:</td>
<td>Typically by the end of Year 4, students:</td>
<td>Typically by the end of Year 6, students:</td>
<td>Typically by the end of Year 8, students:</td>
<td>Typically by the end of Year 10, students:</td>
</tr>
</tbody>
</table>

Pose questions

- **Level 1**
 - pose factual and exploratory questions based on personal interests and experiences
 - Examples
 - asking why events make people happy or sad

- **Level 2**
 - pose questions to identify and clarify issues, and compare information in their world
 - Examples
 - asking how and why certain actions and events occurred

- **Level 3**
 - pose questions to expand their knowledge about the world
 - Examples
 - asking who, when, how and why about a range of situations and events

- **Level 4**
 - pose questions to clarify and interpret information and probe for causes and consequences
 - Examples
 - inquiring into cause and effect of significant events in their lives

- **Level 5**
 - pose questions to probe assumptions and investigate complex issues
 - Examples
 - questioning causes and effects of local and world events

- **Level 6**
 - pose questions to critically analyse complex issues and abstract ideas
 - Examples
 - questioning to uncover assumptions and inferences and provoke debate about global events

Identify and clarify information and ideas

- **Level 1**
 - identify and describe familiar information and ideas during a discussion or investigation
 - Examples

- **Level 2**
 - identify and explore information and ideas from source materials
 - Examples

- **Level 3**
 - identify main ideas and select and clarify information from a range of sources
 - Examples

- **Level 4**
 - identify and clarify relevant information and prioritise ideas
 - Examples

- **Level 5**
 - clarify information and ideas from texts or images when exploring challenging issues
 - Examples

- **Level 6**
 - clarify complex information and ideas drawn from a range of sources
 - Examples

Identify and clarify information and ideas

- **English** ACELT1783
- **Science** ACSIS014
- **History** ACHHS017
- **Mathematics** ACMSP048
- **Science** ACSHE034
- **History** ACHHS049

- **English** ACELA1589
- **Mathematics** ACMSP048
- **Science** ACSHE034
- **History** ACHHS049

- **English** ACELA1488
- **Mathematics** ACMSP068
- **Science** ACSIS064
- **History** ACHHS083

- **English** ACELA1517
- **Mathematics** ACMSP118
- **Science** ACSIS231
- **History** ACHHS119

- **English** ACELT1628
- **Science** ACSIS139
- **History** ACHHS150

- **English** ACELT1812
- **Mathematics** ACMSP228
- **Science** ACSIS198
- **History** ACHHS198
<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typically by the end of Foundation Year, students:</td>
<td>Typically by the end of Year 2, students:</td>
<td>Typically by the end of Year 4, students:</td>
<td>Typically by the end of Year 6, students:</td>
<td>Typically by the end of Year 8, students:</td>
<td>Typically by the end of Year 10, students:</td>
</tr>
<tr>
<td>• identifying what led to a decision being made</td>
<td>• exploring patterns and similarities</td>
<td>• establishing a sequence during investigation of artefact, image or text</td>
<td>• giving reasons for a preferred pathway when problem solving</td>
<td>• identifying the strengths and weaknesses of different approaches</td>
<td>• scrutinising contrasting positions offered about events or findings</td>
</tr>
</tbody>
</table>
| Science **ACSI233**
History **ACHHS019** | English **ACELA1786**
Mathematics **ACMMG007** | English **ACELA1460**
Mathematics **ACMNA026**
Science **ACSI038**
History **ACHHK051** | English **ACELT1602**
Mathematics **ACMMG084**
Science **ACIS216**
History **ACHHSK084** | English **ACELT1602**
Mathematics **ACMMG142**
Science **ACSHE081**
History **ACHHS121** | English **ACELA1548**
Mathematics **ACMSP206**
Science **ACSI144**
History **ACCHS154** |
| **English ACELA1786**
Mathematics ACMMG007 | **English ACELA1460**
Mathematics ACMNA026
Science ACSI038
History ACHHK051 | **Examples**
• collecting a variety of representations of particular action(s) | **Examples**
• finding examples of kindness or change in several sources | **Examples**
• processing relevant depictions of an event | **Examples**
• establishing opinion versus fact in literature and film |
| **Examples**
• collecting a variety of representations of particular action(s) | **Examples**
• finding examples of kindness or change in several sources | **Examples**
• collecting, compare and categorise facts and opinions found in a widening range of sources | **Examples**
• analyse, condense and combine relevant information from multiple sources | **Examples**
• critically analyse information and evidence according to criteria such as validity and relevance | **Examples**
• critically analyse independently sourced information to determine bias and reliability |
| English **ACELA1430**
Science ACSSU005
History ACHHS019 | English **ACELA1489**
Mathematics ACMMG037
Science ACSI040
History ACHHK050 | English **ACELA1489**
Mathematics ACMSP096
Science ACSI054
History ACHHS084 | English **ACELA1708**
Mathematics ACMMG141
Science ACSI090
History ACHHS122 | English **ACELT1626**
Mathematics ACMSP205
Science ACSI141
History ACCHS151 | English **ACELT1639**
Mathematics ACMSP253
Science ACSI199
History ACCHS189 |

Organise and process information

- gather similar information or depictions from given sources
- organise information based on similar or relevant ideas from several sources
- collect, compare and categorise facts and opinions found in a widening range of sources
- analyse, condense and combine relevant information from multiple sources
- critically analyse information and evidence according to criteria such as validity and relevance
- critically analyse independently sourced information to determine bias and reliability

Examples

- • identifying what led to a decision being made
- • exploring patterns and similarities
- • establishing a sequence during investigation of artefact, image or text
- • giving reasons for a preferred pathway when problem solving
- • identifying the strengths and weaknesses of different approaches
- • scrutinising contrasting positions offered about events or findings

Examples

- • finding examples of kindness or change in several sources
- • establishing opinion versus fact in literature and film
- • critically analyse information and evidence according to criteria such as validity and relevance
- • critically analyse independently sourced information to determine bias and reliability
- • critiquing data from known and unknown sources
Generating ideas, possibilities and actions

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typically by the end of Foundation Year, students:</td>
<td>Typically by the end of Year 2, students:</td>
<td>Typically by the end of Year 4, students:</td>
<td>Typically by the end of Year 6, students:</td>
<td>Typically by the end of Year 8, students:</td>
<td>Typically by the end of Year 10, students:</td>
</tr>
</tbody>
</table>

Imagine possibilities and connect ideas

<table>
<thead>
<tr>
<th>Use imagination to view or create things in new ways and connect two things that seem different</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
</tr>
<tr>
<td>• changing the shape or colour of familiar objects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Build on what they know to create ideas and possibilities in ways that are new to them</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
</tr>
<tr>
<td>• using a flow chart when plotting actions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expand on known ideas to create new and imaginative combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
</tr>
<tr>
<td>• exchanging or combining ideas using mind maps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Combine ideas in a variety of ways and from a range of sources to create new possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
</tr>
<tr>
<td>• by matching ideas from science and history</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Draw parallels between known and new ideas to create new ways of achieving goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
</tr>
<tr>
<td>• using patterns and trends in Mathematics to arrive at possible solutions in other learning areas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Create and connect complex ideas using imagery, analogies and symbolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
</tr>
<tr>
<td>• developing hypotheses based on known and invented models and theories</td>
</tr>
</tbody>
</table>

Mathematics ACM0108
English ACELT1591
Mathematics ACM0107
Science ACSIS037
History ACHHS052
English ACELT1607
Mathematics ACM0108
Science ACSIS053
Science ACSIS107
History ACHHS148
English ACELY1756
Mathematics ACM0118
Science ACSHE134
History ACHHS192
Science ACMNA239
Science ACMNA239
History ACHHS192

Consider alternatives

<table>
<thead>
<tr>
<th>Suggest alternative and creative ways to approach a given situation or task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
</tr>
<tr>
<td>• considering alternative uses for a familiar product</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identify and compare creative ideas to think broadly about a given situation or problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
</tr>
<tr>
<td>• considering ways of conserving water in their environment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Explore situations using creative thinking strategies to propose a range of alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
</tr>
<tr>
<td>• asking ‘What if...?’ when conducting an investigation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identify situations where current approaches do not work, challenge existing ideas and generate alternative solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
</tr>
<tr>
<td>• examining the environmental impact of transporting goods</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generate alternatives and innovative solutions, and adapt ideas, including when information is limited or conflicting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
</tr>
<tr>
<td>• negotiating a solution to a community dispute</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speculate on creative options to modify ideas when circumstances change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
</tr>
<tr>
<td>• submitting designed and developed ideas or products for further investigation</td>
</tr>
<tr>
<td>Level 1</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Typically by the end of Foundation Year, students:</td>
</tr>
<tr>
<td>English ACELY1651 Mathematics ACMMG006 History ACHHS020</td>
</tr>
</tbody>
</table>

Seek solutions and put ideas into action

Examples
- suggesting different endings to a story
- exploring identified problems and ways of overcoming them
- using a graphic organiser to suggest alternative solutions
- using role plays to test and refine approaches when initial ideas do not work
- using information from a range of sources to predict results from an inquiry or investigation
- expressing difficult concepts digitally, kinaesthetically or spatially

Examples
- predict what might happen in a given situation and when putting ideas into action
- investigate options and predict possible outcomes when putting ideas into action
- experiment with a range of options when seeking solutions and putting ideas into action
- assess and test options to identify the most effective solution and to put ideas into action
- predict possibilities, and identify and test consequences when seeking solutions and putting ideas into action
- assess risks and explain contingencies, taking account of a range of perspectives, when seeking solutions and putting complex ideas into action
Reflecting on thinking and processes

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typically by the end of Foundation Year, students:</td>
<td>Typically by the end of Year 2, students:</td>
<td>Typically by the end of Year 4, students:</td>
<td>Typically by the end of Year 6, students:</td>
<td>Typically by the end of Year 8, students:</td>
<td>Typically by the end of Year 10, students:</td>
</tr>
</tbody>
</table>

Think about thinking (metacognition)

- **Level 1**
 - describe what they are thinking and give reasons why

- **Level 2**
 - describe the thinking strategies used in given situations and tasks
 - Examples
 - drawing on a past experience to explain their thinking

- **Level 3**
 - reflect on, explain and check the processes used to come to conclusions
 - Examples
 - explaining ways they check their thinking and deal with setbacks

- **Level 4**
 - reflect on assumptions made, consider reasonable criticism and adjust their thinking if necessary
 - Examples
 - identifying where methods of investigation and inquiry could be improved

- **Level 5**
 - assess assumptions in their thinking and invite alternative opinions
 - Examples
 - reflecting on the accuracy of their own and others’ thinking

- **Level 6**
 - give reasons to support their thinking, and address opposing viewpoints and possible weaknesses in their own positions
 - Examples
 - reflecting on justifications for approaching problems in certain ways

Reflect on processes

- **Level 1**
 - identify the main elements of the steps in a thinking process

- **Level 2**
 - outline the details and sequence in a whole task and separate it into workable parts
 - Examples
 - identifying steps involved in daily routines

- **Level 3**
 - identify pertinent information in an investigation and separate into smaller parts or ideas
 - Examples
 - using logic to sort information in graphic organisers or musical segments

- **Level 4**
 - identify and justify the thinking behind choices they have made
 - Examples
 - examining the significant aspects of an historical event

- **Level 5**
 - evaluate and justify the reasons behind choosing a particular problem-solving strategy
 - Examples
 - explaining why particular musical notations or mathematical sequences were

- **Level 6**
 - balance rational and irrational components of a complex or ambiguous problem to evaluate evidence
 - Examples
 - choosing images that best represent an idea or product

Examples

- English **ACELT1783**
- English **ACELT1590**
- Mathematics **ACMNA017**
- Science **ACSIS214**

- English **ACELT1640**
- Mathematics **ACMSP247**
- Science **ACSHE194**
- History **ACHHS188**
<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typically by the end of Foundation Year, students:</td>
<td>Typically by the end of Year 2, students:</td>
<td>Typically by the end of Year 4, students:</td>
<td>Typically by the end of Year 6, students:</td>
<td>Typically by the end of Year 8, students:</td>
<td>Typically by the end of Year 10, students:</td>
</tr>
</tbody>
</table>

Transfer knowledge into new contexts

- **Examples**
 - giving reasons for rules at home and school
 - applying reasons for actions previously given to similar new situations

- **Examples**
 - using visual or numerical representations to clarify information
 - using statistics to interpret information from census data about migration

- **Examples**
 - explaining choices, such as the use of a soundtrack to accompany a performance
 - demonstrating ways ideas gained in an historical or literary context could be applied in a different scenario
Analysing, synthesising and evaluating reasoning and procedures

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typically by the end of Foundation Year, students:</td>
<td>Typically by the end of Year 2, students:</td>
<td>Typically by the end of Year 4, students:</td>
<td>Typically by the end of Year 6, students:</td>
<td>Typically by the end of Year 8, students:</td>
<td>Typically by the end of Year 10, students:</td>
</tr>
</tbody>
</table>

Apply logic and reasoning

Level 1
- identify the thinking used to solve problems in given situations

Examples
- asking how dilemmas in narratives were solved

Level 2
- identify reasoning used in choices or actions in specific situations

Examples
- asking what course of action was most logical and why

Level 3
- identify and apply appropriate reasoning and thinking strategies for particular outcomes

Examples
- using logical or predictive reasoning when problem solving

Level 4
- assess whether there is adequate reasoning and evidence to justify a claim, conclusion or outcome

Examples
- comparing and contrasting interpretations of information or image

Level 5
- identify gaps in reasoning and missing elements in information

Examples
- finding wrong rationales or assumptions made and/or illogical conclusions drawn when seeking outcomes

Level 6
- analyse reasoning used in finding and applying solutions, and in choice of resources

Examples
- testing propositions to identify reliability of data and faulty reasoning when designing new products

Draw conclusions and design a course of action

Level 1
- share their thinking about possible courses of action

Examples
- discussing various ways people could have acted

Level 2
- identify alternative courses of action or possible conclusions when presented with new information

Examples
- describing how an outcome might change if a character acted differently

Level 3
- draw on prior knowledge and use evidence when choosing a course of action or drawing a conclusion

Examples
- assessing the worth of elements of a planned approach or solution

Level 4
- scrutinise ideas or concepts, test conclusions and modify actions when designing a course of action

Examples
- charting progress of an argument or investigation and proposing

Level 5
- differentiate the components of a designed course of action and tolerate ambiguities when drawing conclusions

Examples
- assessing the success of a formula for a product or management of an

Level 6
- use logical and abstract thinking to analyse and synthesise complex information to inform a course of action

Examples
- using primary or secondary evidence to support or refute a conclusion

English ACED1786
Mathematics ACMNA289
History ACHHS021

English ACED1462
Science ACSHE035
History ACHHS051

English ACED1690
Mathematics ACMNA076
Science ACSIS057

English ACED1614
Science ACSIS221

English ACED1730
Science ACSIS234
History ACHHS152

English ACED1754
Mathematics ACMMG244
History ACHHS187

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Typically by the end of Foundation Year, students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>ACELY1646</td>
</tr>
<tr>
<td>Math</td>
<td>ACMNA005</td>
</tr>
<tr>
<td>Science</td>
<td>ACSIS025</td>
</tr>
<tr>
<td>History</td>
<td>ACHHK046</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 2</th>
<th>Typically by the end of Year 2, students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>ACEL1469</td>
</tr>
<tr>
<td>Math</td>
<td>ACMNA015</td>
</tr>
<tr>
<td>Science</td>
<td>ACSIS025</td>
</tr>
<tr>
<td>History</td>
<td>ACHHK046</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 3</th>
<th>Typically by the end of Year 4, students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>ACELT1604</td>
</tr>
<tr>
<td>Math</td>
<td>ACMNA073</td>
</tr>
<tr>
<td>Science</td>
<td>ACSHE062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 4</th>
<th>Typically by the end of Year 6, students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>ACELY1801</td>
</tr>
<tr>
<td>Math</td>
<td>ACMNA103</td>
</tr>
<tr>
<td>Science</td>
<td>ACSIS218</td>
</tr>
<tr>
<td>History</td>
<td>ACHHS119</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 5</th>
<th>Typically by the end of Year 8, students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>ACEL1732</td>
</tr>
<tr>
<td>Math</td>
<td>ACMSP171</td>
</tr>
<tr>
<td>Science</td>
<td>ACSIS172</td>
</tr>
<tr>
<td>History</td>
<td>ACHHS155</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 6</th>
<th>Typically by the end of Year 10, students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>ACEL1750</td>
</tr>
<tr>
<td>Math</td>
<td>ACMSP283</td>
</tr>
<tr>
<td>Science</td>
<td>ACSIS189</td>
</tr>
</tbody>
</table>

Evaluate procedures and outcomes

<table>
<thead>
<tr>
<th>Level</th>
<th>Typically by the end of Year 10, students:</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>ACELY1752</td>
</tr>
<tr>
<td>Math</td>
<td>ACMSP283</td>
</tr>
<tr>
<td>Science</td>
<td>ACSIS189</td>
</tr>
<tr>
<td>History</td>
<td>ACHHS188</td>
</tr>
</tbody>
</table>

Examples

- **Level 1**:
 - Asking whether their work sounds and looks right and makes sense
 - Evaluating whether they have accomplished what they set out to achieve
- **Level 2**:
 - Asking whether they listened to a peer’s answer well or used a suitable procedure
 - Evaluating whether specified materials or calculations were appropriate for set goals or evidence presented
- **Level 3**:
 - Evaluating whether they have evaluated the effectiveness of ideas, products, performances, methods and courses of action against given criteria
 - Assessing their own and peer responses to an issue, performance or artefact
- **Level 4**:
 - Explaining and justifying ideas and outcomes
 - Evaluating whether a chosen investigation method withstands scrutiny
- **Level 5**:
 - Evaluating the effectiveness of ideas, products and performances and implementing courses of action to achieve desired outcomes against criteria they have identified
 - Strengthening a conclusion, identifying alternative solutions to an investigation
- **Level 6**:
 - Explaining intentions and justifying ideas, methods and courses of action, and accounting for expected and unexpected outcomes against criteria they have identified
 - Evaluating the effectiveness of ideas, products and performances and implementing courses of action to achieve desired outcomes against criteria they have identified